Computation of Smooth Manifolds Via Rigorous Multi-parameter Continuation in Infinite Dimensions
نویسندگان
چکیده
In this paper, we introduce a constructive rigorous numerical method to compute smooth manifolds implicitly defined by infinite dimensional nonlinear operators. We compute a simplicial triangulation of the manifold using a multi-parameter continuation method on a finite dimensional projection. The triangulation is then used to construct local charts and an atlas of the manifold in the infinite dimensional domain of the operator. The idea behind the construction of the smooth charts is to use the radii polynomial approach to verify the hypotheses of the uniform contraction principle over a simplex. The construction of the manifold is globalized by proving smoothness along the edge of adjacent simplices. We apply the method to compute portions of a twodimensional manifold of equilibria of the Cahn-Hilliard equation.
منابع مشابه
Rigorous computation of smooth branches of equilibria for the three dimensional Cahn-Hilliard equation
In this paper, we propose a new general method to compute rigorously global smooth branches of equilibria of higher-dimensional partial differential equations. The theoretical framework is based on a combination of the theory introduced in Global smooth solution curves using rigorous branch following [2] and in Analytic estimates and rigorous continuation for equilibria of higher-dimensional PD...
متن کاملQuasi-Gap and Gap Functions for Non-Smooth Multi-Objective Semi-Infinite Optimization Problems
In this paper, we introduce and study some new single-valued gap functions for non-differentiable semi-infinite multiobjective optimization problems with locally Lipschitz data. Since one of the fundamental properties of gap function for optimization problems is its abilities in characterizing the solutions of the problem in question, then the essential properties of the newly introduced ...
متن کاملSpectral Measure Computations for Composite Materials∗
The analytic continuation method of homogenization theory provides Stieltjes integral representations for the effective parameters of composite media. These representations involve the spectral measures of self-adjoint random operators which depend only on the composite geometry. On finite bond lattices, these random operators are represented by random matrices and the spectral measures are giv...
متن کاملManifolds of mappings and shapes
In his Habilitationsvortrag, Riemann described infinite dimensional manifolds parameterizing functions and shapes of solids. This is taken as an excuse to describe convenient calculus in infinite dimensions which allows for short and transparent proofs of the main facts of the theory of manifolds of smooth mappings. Smooth manifolds of immersions, diffeomorphisms, and shapes, and weak Riemannia...
متن کاملRigorous numerics of tubular, conic, star-shaped neighborhoods of slow manifolds for fast-slow systems
We provide a rigorous numerical computation method to validate tubular neighborhoods of normally hyperbolic slow manifolds with the explicit radii for the fast-slow system { x′ = f(x, y, ), y′ = g(x, y, ). Our main focus is the validation of the continuous family of eigenpairs {λi(y; ), ui(y; )}i=1 of fx(h (y), y, ) over the slow manifold S = {x = h (y)} admitting the graph representation. In o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Foundations of Computational Mathematics
دوره 16 شماره
صفحات -
تاریخ انتشار 2016